Simon’s Satisficing Strategy In A Nutshell

Simon’s satisficing strategy is a decision-making technique where the individual considers various solutions until they find an acceptable option. Satisficing is a portmanteau combining sufficing and satisfying and was created by psychologist Herbert A. Simon. He argued that many individuals make decisions with a satisfactory (and not optimal) solution. Satisfactory decisions are preferred because they achieve an acceptable result and avoid the resource-intensive search for something more optimal.

Understanding Simon’s satisficing strategy

Simon is also the father of bounded rationality.

Indeed, humans lack the cognitive resources to make optimal decisions. We have little understanding of outcome probabilities and can rarely evaluate relevant outcomes with sufficient precision. Furthermore, our memories tend to be unreliable.

Given these limitations, a more realistic approach involves logical and reasoned decision making. Simon called this process “bounded rationality”. Here, satisficing individuals make decisions that are based on certain, non-exhaustive criteria.

Satisficing versus maximizing

Satisficing is not exclusively driven by cognitive limitations. It also seeks to maximize utility, or the extent to which a task or choice is pleasant or desirable. 

For many years, behavioral economists assumed that task desirability was linked to how much information the decision-maker had at their disposal. 

But this is untrue. To prove this, consider the key differences between a satisficer and a maximizer:

  1. The satisficer is not attached to the very best outcome. As a result, they experience less regret and higher self-esteem than their maximizing counterparts – who tend to be outcome-dependent perfectionists.
  2. The satisficer can move on after deciding, while the maximizer needlessly expends more time and energy ruminating.
  3. The satisficer does not obsess over other options and is happier for it. Conversely, the maximizer makes decisions based on external comparisons and not on their own needs or pleasure. This tends to make them unhappier.

Examples of Simon’s satisficing strategy

Consider the consumer who has a leaking pipe in their basement on a weekend. The best solution to this problem is replacing the pipe, but this entails finding a suitable plumber and is an expensive fix. Instead, the consumer chooses to stem the leak with a temporary sealant. While the sealant is by no means a permanent fix, it is satisfactory enough to stem the leak and saves time, money, and energy.

Satisficing has implications for copywriting and web design too. Visitors will tend not to stay on a company site for long unless there are obvious and satisfactory solutions to their problems.

The strategy can also be seen in consumer psychology. When choosing a product such as a pipe sealant, the consumer is looking for the simplest, most readily available option. While more effective solutions exist, they do not come into consideration. 

For example, an office worker might purchase a single piece of accounting software despite there being more benefit in buying the whole suite. A fitness fanatic may purchase a low-quality pair of earphones to use while running, despite several competitor products offering better sound rendition.

Key takeaways

  • Simon’s satisficing strategy is a form of decision making that advocates satisfactory and not optimal solutions.
  • Simon’s satisficing strategy avoids cognitive overload in the often fruitless search for optimal outcomes. These outcomes result in needless expenditure of time, energy, or money.
  • Simon’s satisficing strategy has applications in consumer psychology and user design. Consumers who adopt the strategy tend to be happier and have higher self-esteem than those who opt to maximize the outcomes of decision making.

As highlighted by German psychologist Gerd Gigerenzer in the paper “Heuristic Decision Making,” the term heuristic is of Greek origin, meaning “serving to find out or discover.” More precisely, a heuristic is a fast and accurate way to make decisions in the real world, which is driven by uncertainty.

What is a Heuristic? Beyond biases and the prevailing narrowed vision of the mind

In a 1996 paper entitled “Reasoning the Fast and Frugal Way: Models of Bounded Rationality” psychologists Gerd Gigerenzer and Daniel G. Goldstein highlighted:

Humans and animals make inferences about the world under limited time and knowledge. In contrast, many models of rational inference treat the mind as a Laplacean Demon, equipped with unlimited time, knowledge, and computational might.

This is a very important concept to start with. Where modern psychologists and theorists of mind manufacture experiments in the lab, those experiments are tied to specific scenarios, that are hardly replicable in the real world.

Why is that? It all starts with a narrow theory of mind.

A narrow definition of rationality

Experiments are manufactured and often based on assumptions around how our minds work. For instance, if a psychologist will label rationality as the ability to optimize during a decision-making process (just like a machine would do) this requires the mind to gather all the possible information to come to a logical decision.

However, in the real world, decisions are made with incomplete information, a high degree of uncertainty and little to no understanding of what’s coming next. Therefore, when the psychologist mutters about the inability of the human brain to understand statistics or logic. In the real world, that means survival.

If surviving means losing some efficiency or avoiding optimization to prevent massive failure, our mind is working as it should.

Risk vs. Uncertainty

Another component that the conventional or prevailing school of thought is the lack of understanding of the domain in which the human mind is operating. That’s a key point to understand the difference between risk and uncertainty.

Risk is computable

Risk is a concept that analysts love. Why? It’s something that can be modeled. Thus, circumscribed to scenarios that have definite rules, like games. You often see in business books how game theory helped businessmen to be successful.

But that is a story crafted in hindsight. Game theory or your skills as a chess player might help you (in impressing others) in normal circumstances (assuming those exist) but they won’t help you much in the real world. Unless you have an alternative toolbox made of heuristics.

Uncertainty is not computable

When financial analysts evaluate risks they fall into the trap of thinking that we can understand the real world by modeling it. The modern approaches to entrepreneurship try to bring this same logic to the business world, with nefast consequences.

When there is a high variability of outcomes, it’s impossible to model the risk. If at all you need a simple set of rules of thumb to avoid the worst-case scenario because if that materializes that will be no risk-model that will help with that.

Indeed the consequences of an uncertain scenario might be too bad for you to actually even see its outcome because survival is at stake.

Unmodeling the real world

When psychological experiments are made in the lab, often times the psychologist starts with a preconceived idea of the human mind and she works her way back to prove it with an experiment.

When that happens experiments are “manufactured” (in many cases unconsciously) to produce a certain result (in short, biases are more a domain applicable to psychologists than of laypeople dealing with real-world uncertainty).

This has come up recently with what is called a Replication Crisis, which as highlighted on Wikipedia:

The replication crisis (or replicability crisis or reproducibility crisis) is, as of 2019, an ongoing methodological crisis in which it has been found that many scientific studies are difficult or impossible to replicate or reproduce. The replication crisis affects the social sciences and medicine most severely.

Part of this trend is in the use of statistical tools that are not proper for real-world analyses, and the fact that research sometimes turns into an attention-driven activity. As pointed out by Noah Smith in Bloombergs’ Why ‘Statistical Significance’ Is Often Insignificant:”

In psychology, in medicine, and in some fields of economics, large and systematic searches are discovering that many findings in the literature are spurious. John Ioannidis, professor of medicine and health research at Stanford University, goes so far as to say that “most published research findings are false,”  including those in economics. The  tendency research journals have of publishing anything with p-values lower than 5 percent — the arbitrary value referred to as “statistical significance” — is widely suspected as a culprit.

To be sure, this is not to say those experiments aren’t valid. Worse than that, in some instances, they carry from the beginning assumptions about the psyche of the subjects that are biased themselves.

In short, the biases that we all talk about nowadays, especially in the business world, in reality, might easily be explained with a theory of mind that goes beyond the conventional definition of rationality.

This definition starts by thinking of our mind as an easily tricked machine, that due to its survival mechanisms isn’t well-adapted anymore to modern times. Thus, it can easily fall prey to dozens if not hundreds of biases that affect our daily lives.

That is we see anywhere today in business publications massive lists of cognitive biases that make us more “aware.”

Heuristics: dirt and quick? Not really!

As highlighted in Heuristic Decision Making:”

The goal of making judgments more accurately by ignoring information is new. It goes beyond the classical assumption that a heuristic trades off some accuracy for less effort.

The main perspective for which heuristics have been studied and communicated to a mass business audience is through the fact that by definition a heuristic is quick and dirty. In short, our error-prone mind generates biases because we use heuristics that made us sacrifice efficiency for speed in the face of a sort la lazy mechanism of the mind.

According to this view, the mind might ignore important information in an efficiency-driven way, almost like it was optimizing for computing power. 

In reality, the mind might have learned that ignoring useless information is a more effective survival mechanism in that specific context. Therefore, focusing on one key data point is way more reliable than taking more information. This completely changes the paradigm.

Where a lazy-driven mind avoids too much information because it’s not computably able to process it (thus sacrificing efficiency for speed almost like it was a computer). In a new paradigm, where heuristics and rules of thumbs become central as a necessary filtering mechanism of the mind that learns ho to ignore useless and irrelevant information.

In short, what matters is the outcome of the action, not the process neither the motivation that drives the process.

Conflict of interests, marketing, and manipulation

New media have enabled companies to communicate at large scale. When this communication is done right we can call it marketing. When that’s done wrong we can call it a conflict of interest or at worst manipulation.

Thus, many of what we call biases are also the consequence of the way the message gets framed to us. In short, it’s like playing a game where one player has to trick the other. As the other player learns the tricks of the first player, new strategies need to be found.

One there is a gap between the trickster and the tricked a bias might emerge as a better ability of the trickster.

Blind faith in technology

While planning a trip back to the city I live in, I was thinking to postpone the trip due to bad weather. While consulting my GPS which optimizes for shorter routes (not certainly for the beauty of the landscape or chances of survival) I risked to get to the end of the trip underwater.

In short, the GPS was giving me the time to destination with a bit of delay but without necessarily mentioning that I was getting there by risking to be flooded!

This blind faith in technology isn’t due to our inability to deal with it. Rather with the way these technologies are framed. When technology is built to optimize, and when it is marketed so that you believe that optimization is what matters in any context (optimization works in narrow ordinary situations) you end up relying too much on it.

The central problem with a two-system thinking model

Theories proposed by psychologists like Kahneman and Tversky have become central in the business world. The book Thinking, Fast And Slow has become a business bible and indeed that is a great read.

Yet the assumptions underlying these theories stand on a hypothetical optimization process humans should follow when making a decision. As highlighted in the paper Heuristic Decision Making:”

As Kahneman (2003) explained in his Nobel Memorial Lecture: “Our research attempted to obtain a map of bounded rationality, by exploring the systematic biases that separate the beliefs that people have and the choices they make from the optimal beliefs and choices assumed in rational-agent models”

This view might start with a wrong definition and interpretation of bounded rationality formulated by Simon. Bounded rationality is not about systematic biases, it’s about decision-making in the real world, which is unpredictable.

Fast, frugal, yet accurate

Another key concept to internalize to deeply understand this alternative view of bounded rationality is the concept of ecological rationality. Ecological rationality looks for strategies that are better suited for a specific environment and context.

The key point here is that there is no best strategy, or optimization strategy because that would not be possible in a large world made of uncertainty.

Therefore, the rules of thumb we might be able to use for each circumstance will help us take advantage of the structure of the environment we operate within.

Thus in this sort of decision-making process, it is like we do create a small world but highly adapted to context and circumstance, which is the opposite of what classic theories of rationality do, assuming that our mind works in a vacuum, or in a sort of free-context reality.

The two sides of Bounded rationality

Bounded rationality is a concept attributed to Herbert Simon, an economist and political scientist interested in decision-making and how we make decisions in the real world. In fact, he believed that rather than optimizing (which was the mainstream view in the past decades) humans follow what he called satisficing.

Based on what we have said so far, let’s look again at the concept of bounded rationality. According to the definition given by his father, Simon, bounded rationality has two main sides:

  • ecological
  • and cognitive

It’s ecological because “the mind is adapted for real-world environments.” Therefore, on the one side, the mind makes decisions based on the structure of the environment. And on the other side, there is the computational capability of the decision-maker (cognitive side).

As highlighted by Gerd Gigerenzer and Wolfgang Gaissmaier in Heuristic Decision Making modern psychologists have focused their attention on the latter (the cognitive side).

More precisely, the focus on the cognitive side has produced the misunderstanding that as the human mind has limited ability to process information, it produces a set of irreparable biases.

Part of this misunderstanding might be given by the fact that those presumably simple heuristics that the mind uses to solve real-world problems are not sophisticated enough to look interesting to the norms of classical rationality.

The importance of Ecological Rationality

Once you understand the other side of rationality, not the cognitive, but the ecological, it changes everything.

In an ecological rationality sense, less-is-more becomes a powerful heuristic to rely on in many of the real-world scenarios.

Less-is-more is about ignoring cues that not only make us worse decision-makers. It also means that after a certain point more information leads to worse decisions, even when the costs of acquiring that information are zero. 

Redefining biases

In the conventional view, a bias is a cognitive error the mind makes, which is due to our lack of understanding of the real world driven by classic rationality. In the alternative way to look at bounded rationality in a decision-making process, it needs to balance out bias and flexibility to produce overall an inference which is more effective than a system that has no biases at all!

In that scenario, less information, ignoring a big chunk of noisy information and make “biased decisions” might lead to better decision-making.

Building an adaptive toolbox for entrepreneurs

Once you understand all the principles highlighted above, you start tinkering with simple algorithms, that we can call heuristics, extremely useful for the businessman who doesn’t want to fall trap of complex thinking for the sake of it.

The FourWeekMBA analysis and study into this adaptive toolbox has just started, and we’ll be looking more and more into a set of simple heuristics to use in different contexts, by starting from when it makes sense to use them in the first place.

There are a few contexts in the business world where gathering more information, data and complex models can indeed help build a successful company (like at an operational level). But there are many other places (strategy and vision) where those complex systems not only do not work but are harmful.

For the sake of having a better toolbox for directing your business in the right direction, we’ll continue our investigation!


  • Reasoning the Fast and Frugal Way: Models of Bounded Rationality, Gerd Gigerenzer and Daniel G. Goldstein, Max Planck Institute for Psychological Research and University of Chicago, Psychological Review Copyright 1996 by the American Psychological Association, Inc. 1996, Vol. 103. No. 4, 650-669
  • Heuristic Decision Making, Gerd Gigerenzer and Wolfgang Gaissmaier, Annu. Rev. Psychol. 2011. 62:451–82
  • Simon, Herbert, 1983. “On the Behavioral and Rational Foundation of Economic Theory,” Working Paper Series 115, Research Institute of Industrial Economics.
  • Simon, Herbert A., 1978. “Rational Decision-Making in Business Organizations,” Nobel Prize in Economics documents 1978-1, Nobel Prize Committee.

Read Next: Heuristics, Biases.

Other business resources:

Read Next: Heuristics, Biases.

Connected Thinking Frameworks

Convergent vs. Divergent Thinking

Convergent thinking occurs when the solution to a problem can be found by applying established rules and logical reasoning. Whereas divergent thinking is an unstructured problem-solving method where participants are encouraged to develop many innovative ideas or solutions to a given problem. Where convergent thinking might work for larger, mature organizations where divergent thinking is more suited for startups and innovative companies.

Critical Thinking

Critical thinking involves analyzing observations, facts, evidence, and arguments to form a judgment about what someone reads, hears, says, or writes.

Systems Thinking

Systems thinking is a holistic means of investigating the factors and interactions that could contribute to a potential outcome. It is about thinking non-linearly, and understanding the second-order consequences of actions and input into the system.

Vertical Thinking

Vertical thinking, on the other hand, is a problem-solving approach that favors a selective, analytical, structured, and sequential mindset. The focus of vertical thinking is to arrive at a reasoned, defined solution.

Maslow’s Hammer

Maslow’s Hammer, otherwise known as the law of the instrument or the Einstellung effect, is a cognitive bias causing an over-reliance on a familiar tool. This can be expressed as the tendency to overuse a known tool (perhaps a hammer) to solve issues that might require a different tool. This problem is persistent in the business world where perhaps known tools or frameworks might be used in the wrong context (like business plans used as planning tools instead of only investors’ pitches).

Peter Principle

The Peter Principle was first described by Canadian sociologist Lawrence J. Peter in his 1969 book The Peter Principle. The Peter Principle states that people are continually promoted within an organization until they reach their level of incompetence.

Straw Man Fallacy

The straw man fallacy describes an argument that misrepresents an opponent’s stance to make rebuttal more convenient. The straw man fallacy is a type of informal logical fallacy, defined as a flaw in the structure of an argument that renders it invalid.

Streisand Effect

The Streisand Effect is a paradoxical phenomenon where the act of suppressing information to reduce visibility causes it to become more visible. In 2003, Streisand attempted to suppress aerial photographs of her Californian home by suing photographer Kenneth Adelman for an invasion of privacy. Adelman, who Streisand assumed was paparazzi, was instead taking photographs to document and study coastal erosion. In her quest for more privacy, Streisand’s efforts had the opposite effect.


As highlighted by German psychologist Gerd Gigerenzer in the paper “Heuristic Decision Making,” the term heuristic is of Greek origin, meaning “serving to find out or discover.” More precisely, a heuristic is a fast and accurate way to make decisions in the real world, which is driven by uncertainty.

Recognition Heuristic

The recognition heuristic is a psychological model of judgment and decision making. It is part of a suite of simple and economical heuristics proposed by psychologists Daniel Goldstein and Gerd Gigerenzer. The recognition heuristic argues that inferences are made about an object based on whether it is recognized or not.

Representativeness Heuristic

The representativeness heuristic was first described by psychologists Daniel Kahneman and Amos Tversky. The representativeness heuristic judges the probability of an event according to the degree to which that event resembles a broader class. When queried, most will choose the first option because the description of John matches the stereotype we may hold for an archaeologist.

Take-The-Best Heuristic

The take-the-best heuristic is a decision-making shortcut that helps an individual choose between several alternatives. The take-the-best (TTB) heuristic decides between two or more alternatives based on a single good attribute, otherwise known as a cue. In the process, less desirable attributes are ignored.


The concept of cognitive biases was introduced and popularized by the work of Amos Tversky and Daniel Kahneman in 1972. Biases are seen as systematic errors and flaws that make humans deviate from the standards of rationality, thus making us inept at making good decisions under uncertainty.

Bundling Bias

The bundling bias is a cognitive bias in e-commerce where a consumer tends not to use all of the products bought as a group, or bundle. Bundling occurs when individual products or services are sold together as a bundle. Common examples are tickets and experiences. The bundling bias dictates that consumers are less likely to use each item in the bundle. This means that the value of the bundle and indeed the value of each item in the bundle is decreased.

Barnum Effect

The Barnum Effect is a cognitive bias where individuals believe that generic information – which applies to most people – is specifically tailored for themselves.

First-Principles Thinking

First-principles thinking – sometimes called reasoning from first principles – is used to reverse-engineer complex problems and encourage creativity. It involves breaking down problems into basic elements and reassembling them from the ground up. Elon Musk is among the strongest proponents of this way of thinking.

Ladder Of Inference

The ladder of inference is a conscious or subconscious thinking process where an individual moves from a fact to a decision or action. The ladder of inference was created by academic Chris Argyris to illustrate how people form and then use mental models to make decisions.

Six Thinking Hats Model

The Six Thinking Hats model was created by psychologist Edward de Bono in 1986, who noted that personality type was a key driver of how people approached problem-solving. For example, optimists view situations differently from pessimists. Analytical individuals may generate ideas that a more emotional person would not, and vice versa.

Second-Order Thinking

Second-order thinking is a means of assessing the implications of our decisions by considering future consequences. Second-order thinking is a mental model that considers all future possibilities. It encourages individuals to think outside of the box so that they can prepare for every and eventuality. It also discourages the tendency for individuals to default to the most obvious choice.

Lateral Thinking

Lateral thinking is a business strategy that involves approaching a problem from a different direction. The strategy attempts to remove traditionally formulaic and routine approaches to problem-solving by advocating creative thinking, therefore finding unconventional ways to solve a known problem. This sort of non-linear approach to problem-solving, can at times, create a big impact.

Bounded Rationality

Bounded rationality is a concept attributed to Herbert Simon, an economist and political scientist interested in decision-making and how we make decisions in the real world. In fact, he believed that rather than optimizing (which was the mainstream view in the past decades) humans follow what he called satisficing.

Dunning-Kruger Effect

The Dunning-Kruger effect describes a cognitive bias where people with low ability in a task overestimate their ability to perform that task well. Consumers or businesses that do not possess the requisite knowledge make bad decisions. What’s more, knowledge gaps prevent the person or business from seeing their mistakes.

Occam’s Razor

Occam’s Razor states that one should not increase (beyond reason) the number of entities required to explain anything. All things being equal, the simplest solution is often the best one. The principle is attributed to 14th-century English theologian William of Ockham.

Mandela Effect

The Mandela effect is a phenomenon where a large group of people remembers an event differently from how it occurred. The Mandela effect was first described in relation to Fiona Broome, who believed that former South African President Nelson Mandela died in prison during the 1980s. While Mandela was released from prison in 1990 and died 23 years later, Broome remembered news coverage of his death in prison and even a speech from his widow. Of course, neither event occurred in reality. But Broome was later to discover that she was not the only one with the same recollection of events.

Crowding-Out Effect

The crowding-out effect occurs when public sector spending reduces spending in the private sector.

Bandwagon Effect

The bandwagon effect tells us that the more a belief or idea has been adopted by more people within a group, the more the individual adoption of that idea might increase within the same group. This is the psychological effect that leads to herd mentality. What in marketing can be associated with social proof.

Read Next: BiasesBounded RationalityMandela EffectDunning-Kruger EffectLindy EffectCrowding Out EffectBandwagon Effect.

Main Guides:

About The Author

Scroll to Top