TRIZ: Theory of Inventive Problem Solving

The TRIZ method is an organized, systematic, and creative problem-solving framework. The TRIZ method was developed in 1946 by Soviet inventor and author Genrich Altshuller who studied thousands of inventions across many industries to determine if there were any patterns in innovation and the problems encountered. 

Understanding the TRIZ method

TRIZ is a Russian acronym for Teoriya Resheniya Izobretatelskikh Zadatch, translated as “The Theory of Inventive Problem Solving” in English. For this reason, the TRIZ method is sometimes referred to as the TIPS method.

From careful research of over 200,000 patents, Altshuller and his team discovered that 95% of problems faced by engineers in a specific industry had already been solved. Instead, the list was used to provide a systematic methodology that would allow teams to focus their creativity and encourage innovation.

In essence, the TRIZ method is based on the simple hypothesis that somebody, somewhere in the world has solved the same problem already. Creativity, according to Altshuller, meant finding that prior solution and then adapting it to the problem at hand.

The five levels of the TRIZ method

While Altshuller analyzed hundreds of thousands of patents, he acknowledged that not every innovation was necessarily groundbreaking in scope or ambition. 

After ten years of research between 1964 and 1974, he assigned each patent a value based on five levels of innovation:

  • Level 1 (32% of all patents) – these are innovations that utilize obvious or conventional solutions with well-established techniques.
  • Level 2 (45%) – the most common form where minor innovations are made that solve technical contradictions. These are easily overcome when combining knowledge from different but related industries.
  • Level 3 (18%) – these are inventions that resolve a physical contradiction and require knowledge from non-related industries. Elements of technical systems are either completely replaced or partly changed.
  • Level 4 (4%) – or innovations where a new technical system is synthesized. This means innovation is based on science and creative endeavor and not on technology. Contradictions may be present in old, unrelated technical systems.
  • Level 5 (1%) – the rarest and most complex patents involved the discovery of new solutions and ideas that propel existing technology to new levels. These are pioneering inventions that result in new systems and inspire subsequent innovation in the other four levels over time.

How the TRIZ method works

Since its release, the TRIZ method has been refined and altered by problem-solvers and scientists multiple times. But the problem-solving framework it espouses remains more or less the same:

  1. Problem solvers must start by gathering the necessary information to solve the problem. This includes reference materials, processes, materials, and tools.
  2. Information related to the problem should also be collected, organized, and analyzed. This may pertain to the practical experience of the problem, competitor solutions, and historical trial-and-error attempts.
  3. Once the specific problem has been identified, the TRIZ method encourages the problem solvers to transform it into a generic problem. Generic solutions can then be formulated and, with the tools at hand, the team can then create a specific solution that solves the specific problem.

The last step in the TRIZ method appears to be rather complicated. But it is important for innovators to remember that most problems are not specific or unique to their particular circumstances. Someone in the world at some point in time has faced the same issue and overcome it.

Key takeaways:

  • The TRIZ method is an organized, systematic, and creative problem-solving framework. It was developed in 1946 by Soviet inventor and author Genrich Altshuller who studied 200,000 patents to determine if there were patterns in innovation.
  • Altshuller acknowledged that not every innovation was necessarily groundbreaking in scope or ambition. From the result of his research, he created five levels of innovation, with Level 1 innovations resulting from obvious or conventional solutions and Level 5 innovations resulting in new ideas that propelled technology forward.
  • The TRIZ method has been altered multiple times since it was released and may appear complicated. However, problem-solving teams can take comfort from the fact that others have most likely prevailed against similar problems in the past.

Connected Decision-Making Frameworks

Cynefin Framework

The Cynefin Framework gives context to decision making and problem-solving by providing context and guiding an appropriate response. The five domains of the Cynefin Framework comprise obvious, complicated, complex, chaotic domains and disorder if a domain has not been determined at all.

SWOT Analysis

A SWOT Analysis is a framework used for evaluating the business’s Strengths, Weaknesses, Opportunities, and Threats. It can aid in identifying the problematic areas of your business so that you can maximize your opportunities. It will also alert you to the challenges your organization might face in the future.

Personal SWOT Analysis

The SWOT analysis is commonly used as a strategic planning tool in business. However, it is also well suited for personal use in addressing a specific goal or problem. A personal SWOT analysis helps individuals identify their strengths, weaknesses, opportunities, and threats.

Pareto Analysis

The Pareto Analysis is a statistical analysis used in business decision making that identifies a certain number of input factors that have the greatest impact on income. It is based on the similarly named Pareto Principle, which states that 80% of the effect of something can be attributed to just 20% of the drivers.

Failure Mode And Effects Analysis

A failure mode and effects analysis (FMEA) is a structured approach to identifying design failures in a product or process. Developed in the 1950s, the failure mode and effects analysis is one the earliest methodologies of its kind. It enables organizations to anticipate a range of potential failures during the design stage.

Blindspot Analysis

A Blindspot Analysis is a means of unearthing incorrect or outdated assumptions that can harm decision making in an organization. The term “blindspot analysis” was first coined by American economist Michael Porter. Porter argued that in business, outdated ideas or strategies had the potential to stifle modern ideas and prevent them from succeeding. Furthermore, decisions a business thought were made with care caused projects to fail because major factors had not been duly considered.

Comparable Company Analysis

A comparable company analysis is a process that enables the identification of similar organizations to be used as a comparison to understand the business and financial performance of the target company. To find comparables you can look at two key profiles: the business and financial profile. From the comparable company analysis it is possible to understand the competitive landscape of the target organization.

Cost-Benefit Analysis

A cost-benefit analysis is a process a business can use to analyze decisions according to the costs associated with making that decision. For a cost analysis to be effective it’s important to articulate the project in the simplest terms possible, identify the costs, determine the benefits of project implementation, assess the alternatives.

Agile Business Analysis

Agile Business Analysis (AgileBA) is certification in the form of guidance and training for business analysts seeking to work in agile environments. To support this shift, AgileBA also helps the business analyst relate Agile projects to a wider organizational mission or strategy. To ensure that analysts have the necessary skills and expertise, AgileBA certification was developed.

SOAR Analysis

A SOAR analysis is a technique that helps businesses at a strategic planning level to: Focus on what they are doing right. Determine which skills could be enhanced. Understand the desires and motivations of their stakeholders.

STEEPLE Analysis

The STEEPLE analysis is a variation of the STEEP analysis. Where the step analysis comprises socio-cultural, technological, economic, environmental/ecological, and political factors as the base of the analysis. The STEEPLE analysis adds other two factors such as Legal and Ethical.

Pestel Analysis

The PESTEL analysis is a framework that can help marketers assess whether macro-economic factors are affecting an organization. This is a critical step that helps organizations identify potential threats and weaknesses that can be used in other frameworks such as SWOT or to gain a broader and better understanding of the overall marketing environment.

DESTEP Analysis

A DESTEP analysis is a framework used by businesses to understand their external environment and the issues which may impact them. The DESTEP analysis is an extension of the popular PEST analysis created by Harvard Business School professor Francis J. Aguilar. The DESTEP analysis groups external factors into six categories: demographic, economic, socio-cultural, technological, ecological, and political.

Paired Comparison Analysis

A paired comparison analysis is used to rate or rank options where evaluation criteria are subjective by nature. The analysis is particularly useful when there is a lack of clear priorities or objective data to base decisions on. A paired comparison analysis evaluates a range of options by comparing them against each other.

Related Strategy Concepts: Go-To-Market StrategyMarketing StrategyBusiness ModelsTech Business ModelsJobs-To-Be DoneDesign ThinkingLean Startup CanvasValue ChainValue Proposition CanvasBalanced ScorecardBusiness Model CanvasSWOT AnalysisGrowth HackingBundlingUnbundlingBootstrappingVenture CapitalPorter’s Five ForcesPorter’s Generic StrategiesPorter’s Five ForcesPESTEL AnalysisSWOTPorter’s Diamond ModelAnsoffTechnology Adoption CurveTOWSSOARBalanced ScorecardOKRAgile MethodologyValue PropositionVTDF

Scroll to Top