characteristics-of-quantitative-research-characteristics-of-quantitative-research

What Are The Characteristics Of Quantitative Research? Characteristics Of Quantitative Research In A Nutshell

The characteristics of quantitative research contribute to methods that use statistics as the basis for making generalizations about something. These generalizations are constructed from data that is used to find patterns and averages and test causal relationships.

To assist in this process, key quantitative research characteristics include:

  1. The use of measurable variables.
  2. Standardized research instruments.
  3. Random sampling of participants.
  4. Data presentation in tables, graphs, or figures.
  5. The use of a repeatable method.
  6. The ability to predict outcomes and causal relationships.
  7. Close-ended questioning. 

Each characteristic also discriminates quantitative research from qualitative research, which involves the collecting and analyzing of non-numerical data such as text, video, or audio.

With that said, let’s now take a look at each of the characteristics in more detail.

The use of measurable variables

During quantitative research, data gathering instruments measure various characteristics of a population. 

These characteristics, which are called measurables in a study, may include age, economic status, or the number of dependents.

Standardized research instruments

Standardized and pre-tested data collection instruments include questionnaires, surveys, and polls. Alternatively, existing statistical data may be manipulated using computational techniques to yield new insights.

Standardization of research instruments ensures the data is accurate, valid, and reliable. Instruments should also be tested first to determine if study participant responses satisfy the intent of the research or its objectives.

Random sampling of participants

Quantitative data analysis assumes a normal distribution curve from a large population. 

Random sampling should be used to gather data, a technique in which each sample has an equal probability of being chosen. Randomly chosen samples are unbiased and are important in making statistical inferences and conclusions.

Data presentation in tables, graphs, and figures

The results of quantitative research can sometimes be difficult to decipher, particularly for those not involved in the research process.

Tables, graphs, and figures help synthesize the data in a way that is understandable for key stakeholders. They should demonstrate or define relationships, trends, or differences in the data presented.

The use of a repeatable method

Quantitative research methods should be repeatable. This means the method can be applied by other researchers in a different context to verify or confirm a particular outcome.

Replicable research outcomes afford researchers greater confidence in the results. Replicability also reduces the chances that the research will be influenced by selection biases and confounding variables.

The ability to predict outcomes and causal relationships

Data analysis can be used to create formulas that predict outcomes and investigate causal relationships. As hinted at earlier, data are also used to make broad or general inferences about a large population.

Causal relationships, in particular, can be described by so-called “if-then” scenarios, which can be modeled using complex, computer-driven mathematical functions.

Close-ended questioning

Lastly, quantitative research requires that the individuals running the study choose their questions wisely.

Since the study is based on quantitative data, it is imperative close-ended questions are asked. These are questions that can only be answered by selecting from a limited number of options. 

Questions may be dichotomous, with a simple “yes” or “no” or “true” or “false” answer. However, many studies also incorporate multiple-choice questions based on a rating scale, Likert scale, checklist, or order ranking system.

Four real-world examples of quantitative research

Now that we’ve described some key quantitative research examples, let’s go ahead and look at some real-world examples.

1 – A Quantitative Study of the Impact of Social Media Reviews on Brand Perception

In 2015, Neha Joshi undertook quantitative research as part of her thesis at The City University of New York. The thesis aimed to determine the impact of social media reviews on brand perception with a particular focus on YouTube and Yelp.

Joshi analyzed the impact of 942 separate YouTube smartphone reviews to develop a statistical model to predict audience response and engagement on any given video. The wider implications of the study involved using customer reviews as a feedback mechanism to improve brand perception.

2 – A Quantitative Study of Teacher Perceptions of Professional Learning Communities’ Context, Process, and Content

Daniel R. Johnson from Seton Hall University in New Jersey, USA, analyzed the effectiveness of the teacher training model known as Professional Learning Communities (PLC). Specifically, Johnson wanted to research the impact of the model as perceived by certified educators across three specific areas: content, process, and context. There was a dire need for this research since there was little quantitative data on an approach that was becoming increasingly popular at the government, state, and district levels.

Data were collected using Standard Inventory Assessment (SAI) surveys which were online, anonymous, and incorporated a Likert scale response system.

3 – A Quantitative Study of Course Grades and Retention Comparing Online and Face-to-Face Classes

This research was performed by Vickie A. Kelly as part of her Doctor of Education in Educational Leadership at Baker University in Kansas, USA.

Kelly wanted to know whether distance education and Internet-driven instruction were as effective a learning tool when compared to traditional face-to-face instruction. A total of 885 students were selected for the research sample to answer the following two questions:

  1. Is there a statistically significant difference between the grades of face-to-face students and the grades of online students?
  2. Is there a statistically significant difference between course content retention in face-to-face students and online students?

In both cases, there was no significant difference, which suggested that distance education as a learning tool was as effective as face-to-face education.

4 – A quantitative research of consumer’s attitude towards food products advertising

At the University of Bucharest, Romania, Mirela-Cristina Voicu wanted to research consumer attitudes toward traditional forms of advertising such as television, radio, and print. She reasoned that consumer attitudes toward advertising impacted attitudes toward the product or brand itself, with a positive attitude potentially driving purchase intent.

To determine whether there was a link between these factors, 385 consumers in the Bucharest area were interviewed and asked to fill out a questionnaire. Voicu ensured the sample was representative of the broader population in terms of two variables: age and gender.

The results of the quantitative study found that 70% of participants considered traditional forms of advertising to be saturated. In other words, they did not have a positive attitude to the brand or product that was advertised. However, consumer attitudes toward food advertising were much more positive, with 61% of participants categorizing their attitudes as either favorable or very favorable in the questionnaire. 

Key takeaways:

  • The characteristics of quantitative research contribute to methods that use statistics as the basis for making generalizations about something.
  • In a quantitative study, measurable variables are analyzed using standardized research instruments. Importantly, data must be sampled randomly from a large, representative population to avoid biases.
  • Quantitative research data should also be presented in tables and graphs to make key findings more digestible for non-technical stakeholders. Methods must also be repeatable in different contexts to ensure greater outcome confidence and validity.

Main Free Guides:

Scroll to Top
FourWeekMBA
[class^="wpforms-"]
[class^="wpforms-"]