MLOps: Machine Learning Ops And Why It Matters In Business

Machine Learning Ops (MLOps) describes a suite of best practices that successfully help a business run artificial intelligence. It consists of the skills, workflows, and processes to create, run, and maintain machine learning models to help various operational processes within organizations.

Understanding Machine Learning Ops

Machine Learning Ops is a relatively new concept because the commercial application of artificial intelligence (AI) is also an emerging process.

Indeed, AI burst onto the scene less than a decade ago after a researcher employed it to win an image-recognition contest.

Since that time, artificial intelligence can be seen in:

  • Translating websites into different languages.
  • Calculating credit risk for mortgage or loan applications.
  • Re-routing of customer service calls to the appropriate department.
  • Assisting hospital staff in analyzing X-rays.
  • Streamlining supermarket logistic and supply chain operations.
  • Automating the generation of text for customer support, SEO, and copywriting.

As AI becomes more ubiquitous, so too must the machine learning that powers it. MLOps was created in response to a need for businesses to follow a developed machine learning framework. 

Based on DevOps practices, MLOps seeks to address a fundamental disconnect between carefully crafted code and unpredictable real-world data. This disconnect can lead to issues such as slow or inconsistent deployment, low reproducibility, and a reduction in performance.

The four guiding principles of Machine Learning Ops

As noted, MLOps is not a single technical solution but a suite of best practices, or guiding principles.

Following is a look at each in no particular order:

  1. Machine learning should be reproducible. That is, data must be able to audit, verify, and reproduce every production model. Version control for code in software development is standard. But in machine learning, data, parameters, and metadata must all be versioned. By storing model training artifacts, the model can also be reproduced if required.
  2. Machine learning should be collaborative. MLOps advocates that machine learning model production is visible and collaborative. Everything from data extraction to model deployment should be approached by transforming tacit knowledge into code.
  3. Machine learning should be tested and monitored. Since machine learning is an engineering practice, testing and monitoring should not neglected. Performance in the context of MLOps incorporates predictive importance as well as technical performance. Model adherence standards must be set and expected behaviour made visible. The team should not rely on gut feelings.
  4. Machine learning should be continuous. It’s important to realize that a machine learning model is temporary and whose lifecycle depends on the use-case and how dynamic the underlying data is. While a fully automated system may diminish over time, machine learning must be seen as a continuous process where retraining is made as easy as possible.

Implementing MLOps into business operations

In a very broad sense, businesses can implement MLOps by following a few steps:

Step 1 – Recognise stakeholders

MLOps projects are often large, complex, multi-disciplinary initiatives that necessitate the contributions of different stakeholders. These include obvious stakeholders such as machine learning engineers, data scientists, and DevOps engineers. However, these projects will also require collaboration and cooperation from IT, management, and data engineers.

Step 2 – Invest in infrastructure

There are a raft of infrastructure products on the market, and not all are born equal.

In deciding with product to adopt, a business should consider:

  • Reproducibility – the product must make data science knowledge retention easier. Indeed, ease of reproducibility is governed by data version control and experiment tracking.
  • Efficiency – does the product result in time or cost savings? For example, can machine learning remove manual work to increase pipeline capability?
  • Integrability – will the product integrate nicely with existing processes or systems?

Step 3 – Automation

Before moving into production, machine learning projects must be split into smaller, more manageable components. These components must be related but able to be developed separately. 

The process of separating a problem into various components forces the product team to follow a joined process. This encourages the formation of a well-defined language between engineers and data scientists, who work collaboratively to create a product capable of updating itself automatically. This ability is akin to the DevOps practice of continuous integration (CI).

MLOps and AIaaS

Artificial Intelligence as a Service (AlaaS) helps organizations incorporate artificial intelligence (AI) functionality without the associated expertise. Usually, AIaaS services are built upon cloud-based providers like Amazon AWS, Google Cloud, Microsoft Azure, and IMB Cloud, used as IaaS. The AI service, framework, and workflows built upon these infrastructures are offered to final customers for various use cases (e.g., inventory management services, manufacturing optimizations, text generation).
AI Platform diagram

MLOps consists of various phases built on top of an AI platform, where models will need to be prepared (via data labeling, Big Query datasets, Cloud Storage), built, validated, and deployed.

And MLOps is a vast world, made of many moving parts.

Indeed, before the ML code can be operated, as highlighted on Google Cloud, a lot is spent in “configuration, automation, data collection, data verification, testing and debugging, resource management, model analysis, process and metadata management, serving infrastructure, and monitoring.”

The ML Process

ML models follow several steps, an example is: Data extraction > Data analysis > Data preparation > Model training > Model evaluation > Model validation > Model serving > Model monitoring.

Key takeaways

  • Machine Learning Ops encompasses a set of best practices that help organizations successfully incorporate artificial intelligence.
  • Machine Learning Ops seeks to address a disconnect between carefully written code and unpredictable real-world data. In so doing, MLOps can improve the efficiency of machine learning release cycles.
  • Machine Learning Ops implementation can be complex and as a result, relies on input from many different stakeholders. Investing in the right infrastructure and focusing on automation are also crucial. 

Read: AI Industry, Blockchain Economics, Cloud Business Models, Business Model, Snowflake Business Model.

Main Free Guides:

$200 Off Library
No prize
Next time
$300 Off BMI Course
50% Off Flagship Book
No Prize
No luck today
Unlucky :(
No prize
Get your chance to win a prize!
I have read and agree to the Privacy Policy
Scroll to Top